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Transition to a time-dependent state of fluid flow in the wake of a sphere
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In this paper, the results of laboratory investigation about the flow behind the sphere in the range of
150<Re<<300, where very interesting physical phenomenon occurs, are presented. After a first stationary
transition where the flow breaks the axisymmetry, very controlled experiments allow one to define a threshold
for the second transition from stationary to unstable flow, which includes three-dimensional peristaltic oscil-
lations of the two trailing vortices prior to hairpins shedding. The scenario has been proposed to explain the
hairpin formation, as pieces of a counter-rotating longitudinal vortex. Hairpin shedding is suggested to be the
result of oscillations, which are powerful enough, and reconnection of the trailing vortices.
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The wake behind the sphere has been the object of a large
number of experimental and numerical studies and is one of
the prototypes of flow around three-dimensional (3D) bodies.
Previous works [1-3] distinguish different flow regimes be-
hind the sphere. From rest up to Reynolds number Re=20
fluid swims around the sphere and rest without recirculation
area [4]. The wake of the sphere has an axisymmetric sta-
tionary ring structure which keeps its axisymmetry with in-
creasing Reynolds numbers up to Re=212. At Re=212, this
axisymmetry of the recirculation zone is broken and the flow
undergoes a first stationary bifurcation and two parallel
steady counter-rotating vortices appear. In contrast to the
flow behind cylinder, which after the first bifurcation be-
comes unsteady, flow behind the sphere shows a steady in-
stability.

As shown in most numerical and experimental works
[3,5-7] this second transition from a stable to a time-
dependent flow occurs at the Re~275, and the unsteady
wake is characterized by the periodic shedding of connected
hairpin vortices. For Reynolds numbers higher then 350, the
shedding changes its character. Two small hairpins follow
one larger hairpin. At Re~ 500 the flow becomes chaotic.

In spite of the geometrical simplicity of the sphere, the
vortices structures developing behind this bluff body are dif-
ficult to describe, e.g., first bifurcation transition with the
apparition of two-tailed wake, the mechanism of hairpins
appearance, developing and the hairpins connection are not
well known and until today they remain not fully described.
This problem is of enormous importance as this flow is a
good prototype to understand the global problems of insta-
bilities in inhomogeneous flows, which are the subject of
intense modern developments. In addition the instability of
the trailing vortices is an academic subject of renewed inter-
est with the application in aeronautics, related to the problem
of vortex reconnection or with the problem of the persistence
of two trailing vortices limiting seriously the frequency of
landing in airports. The existence of this instability are inten-
sively studied in bubbles motion where this problem is ob-
served and is known as the Leonardo da Vinci paradox.

So in this work the exact mechanism driving the transition
to unsteady flow was studied. In the experiments the focus
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was on the investigation of flow around a second bifurcation,
numerically studied previously by Johnson and Patel [2] and
Tomboulides and Orszag [7].

All experiments were carried out in a low velocity water
channel with a square cross section (10X 10 cm?) and 86 cm
long, which for the sphere of diameter d=1.6 cm, is longer
than 50 sphere diameters. The sphere was held from up-
stream by a rigid bent tube with negligible perturbation on
the flow, but capable of determining the plane of the mirror
symmetry. Velocity in the water tunnel was deduced from
flow mass rate measurement with a special developed strain
gauge balance. Typical velocities were 0.4 to 4 cm/sec,
which corresponds to a Reynolds number from 63 up to 630.
The water temperature was measured with a precision *£0.1°.

The wake visualizations were performed using laser in-
duced fluorescence (LIF) or ink. The dye is injected without
significant influence on the recirculation bubble in the
middle of the sphere by using a thin slit (Fig. 1) of control-
lable horizontal or vertical orientation.

Particle image velocimetry (PIV) image acquisition and
postprocessing were done using ImagerPro 1600 X 1200 12-
bit charge-coupled device (CCD) camera recording double-
frame pairs of images at 15 Hz and a two rod Nd:yttrium-
aluminum-garnet (Nd:YAG) (15 mJ) pulsed laser all
synchronized by the customized PC (using LaVision DaVis
software).

The main interest of the studies was to define exactly the
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FIG. 1. Scheme of the holding of the sphere, including dye
injection principle. The black points on the right show schemati-
cally the position of two counter-rotating vortices. Left picture is
side view; right picture is rear view.
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FIG. 2. Oscillations evolution (top view photos).

beginning and the nature of the second transition from the
stationary state with two counter-rotating vortices to hairpin
vortex shedding. In the previous studies, it was assumed that
after a steady stationary flow with two counter-rotating vor-
tices, hairpin shedding appears as a consequence of a bifur-
cation. Previous publications [1,2] indicate that the second
threshold occurs for Re=275. Most authors suggest this
threshold as a change from a stable planar symmetrical re-
gime with two counter-rotating vortices to an unstable re-
gime or Hopf bifurcation with regular hairpin shedding phe-
nomenon, without emphasizing oscillations prior to hairpin
development.

We began to observe the flow from Re=240 to Re=300.
During the present experiments it was observed that small
kinks appear prior to hairpins shedding (Fig. 2). Similar be-
havior can be observed in visualizations presented by Schou-
veiler and Provansal [4] (also [3,6,7]) and is seen in numeri-
cal studies by Thompson [5].

The two vortices are positioned behind the sphere. Be-
cause the vortices produce downwash, the line which joins
the vortices cores does not lie on the diameter but it is situ-
ated under the middle of the sphere, which can be seen in
Fig. 1.

The visualizations pattern (photos taken from the top) of
the flow behind the sphere is shown in Fig. 2. These two
streaklines correspond to two longitudinal counter-rotating
vortices which are steady up to Re=265. Starting from Rey-
nolds number around 267 it is easy to notice, by visualiza-
tion, small periodic deformation of the two counter-rotating
vortices in the wake of the sphere. The amplitude of the
modulation of the streaklines grows with the increase in the
Reynolds number. First modulations are perceptible in the far
wake of the sphere (these first detectable oscillations in the

FIG. 3. Beginning of peristaltic oscillations, rear view.
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FIG. 4. A definition, on (a) and (b) are shown ways of measur-
ing b' and b", respectively, A=b"-D".

top view are in the far wake) and after increasing the Rey-
nolds number are observable in whole wake behind the
sphere. This flow is not stationary anymore. The amplitude
of the oscillations grows with the distance downstream from
the sphere.

The observed streaklines of oscillating vortices seem to
have a spiral form (Fig. 3). It is important to emphasize that
this phenomenon is fully three dimensional. These deforma-
tions are observed in two perpendicular planes. For example,
the biggest deformation in the xz plane corresponds to the
lowest position of the vortices in the yz plane if the two
initial vortices are positioned in the lower half of the yz
plane. The vortices are not lying in a horizontal or vertical
plane nor any other plane.

Further increasing the Reynolds number, one reaches the
point of observable hairpins shedding, which occurs at Rey-
nolds number of about 280.

To measure the amplitude of the oscillations, a A param-
eter was defined as the difference between the biggest " and
the shortest ' distance between vortices cores (Fig. 4), and
it was measured on the top view photos. Each photo series to
measure the A parameter was taken with a very small incre-
ment of Reynolds number in comparison to the previous se-
ries.

As shown in Fig. 5 the A value is growing with the dis-
tance downstream from the center of the sphere, which cor-
relates with the distance between cores in the stationary re-
gime, which is also growing with the distance downstream
from the center of the sphere. The A parameter increases
almost linearly with Reynolds numbers in the range of 269 to
278. For the Re numbers higher then 278 the value of the A
reaches saturation. From linear approximation and extrapo-
lation for all distances downstream from the center of the
sphere, the A reaches the zero value at Re=267. The esti-
mated instability onset can be established at Re=267, as for
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FIG. 5. (Color online) A as a function of Reynolds number.
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FIG. 6. V, velocity component oscillations for Reynolds num-
bers 262 (a), 266 (b), 280 (c), 291 (d). For Re 280 (c) the velocity
crosses zero value, which corresponds to hairpins appearance.

this Reynolds number the wake becomes modulated and in-
stationary. At this value the onset of the second instability is
defined as a 3D peristaltic oscillation which modulates the
two counter-rotating vortices.

The investigation of flow around this second threshold
obtained by visualization are confirmed below with the re-
sults of PIV measurements. In order to obtain more informa-
tion about hairpins development a time-dependent parameter
was chosen. The parameter was the vertical velocity compo-
nent V, in the area between vortices. In addition a spatial
average V|, component was defined as

— 1
Vy = E J Vydde

on a small region [y,z] between two trailing vortices. The
calculation area is the same on each image (the area is cho-
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FIG. 7. (Color online) Visualizations of hairpins shedding; black
dotted arrows hairpins head velocity, red arrows between vortices
velocity.

sen arbitrary; the limits have no influence on the measured
frequency). The series includes 200 images, each taken at the
frequency of 15 Hz.

At Re=262 the plot of the velocity component V, be-
tween cores is constant in time and noisy (see Fig. 6). With
an increasing Reynolds number the harmonic fluctuations are
noticed at the value of Re=266. These fluctuations are re-
lated to the kinking phenomenon and the amplitude is grow-
ing with an increasing Re number. The value of V, velocity
is always positive in time. ' o

At Re=280, the measured spatial average velocity V,
reaches the value zero for what is shown in Fig. 6. The value
of zero vertical velocity is the result of the appearance of the
closed vortex loops, hairpins (Fig. 7). Transverse component
of vorticity produced by the hairpin head induces downwash
flow periodically in the plane of measurement. It is clear that
when both two counter-rotating vortices are straight lines or
are even kinking the velocity between them is always di-
rected in one way, in our case is still directed upwards (due
to the holding influence). The vertical velocity component
equals zero the first time when the hairpins are produced.
The hairpin head is spinning in the direction perpendicular to
the rest of the hairpin so the velocity produced by the hairpin
head on one side of its center is in opposition to “between-
vortices” velocity. Moreover the vertical velocity component
V, in the center of the hairpin head is zero. It is the center of
the vortex. Because the hairpin is not laying in one plane but
is curved, the induced velocity “between vortices” changes
direction from vertical to horizontal, which is probably the
main reason of the zero value of vertical velocity (Fig. 7).
The first hairpin appearance at Re=280 can be considered as
a result of oscillations strong enough, as well as the undu-
lated longitudinal vorticity.

Unstable phenomena are characterized by their own fre-
quencies. As shown in Fig. 8 the frequencies of peristaltic
instability and of the hairpins shedding (measured by PIV
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FIG. 8. Frequency of 3D peristaltic instability and hairpins
shedding.
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rear and side images and confirmed by visualizations) are
laying in the same line which implies that the hairpins shed-
ding frequency is a continuation of 3D peristaltic undulation
frequency. It means that both these phenomena are related to
the same instability. This instability already starts at the Rey-
nolds number around Re=266. It seems that the hairpin is
just the result of sufficiently strong oscillations in the wake,
more precisely in the recirculation area, and appears as a
large amplitude modulation and reconnection which should
be further studied.

A view on the hairpins formation onset is presented in the
work. Hairpins are essentially small pieces of counter-
rotating vortices produced by stages of strong modulation
and reconnection of the two marginal longitudinal vortices
produced on the nonaxisymmetrical recirculation loop. Con-
sequently the real instability is the one observed in our ex-
periment starting from Re=265, which we call 3D peristaltic
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instability and which is reminiscent of the Crow instability
[8] occurring from vortices of high circulation which is
widely studied in aeronautics. But, the Crow instability pro-
duces oscillations of vortices in two planes inclined at 43°
and the streaklines here are 3D (Fig. 3).

In the second regime, the wake behind the sphere is char-
acterized by two counter-rotating vortices, similar to the
wing tip vortices behind an airplane, which prolong the time
between individual take offs and landings of the planes. The
sphere is the simplest natural generator of two counter-
rotating vortices that allows the study of elementary interac-
tions between vortices.
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